Malaysian Journal of Chemistry, 2017, Vol. 19(2), 82 – 98

Remediation of Cationic Dye Simulated Wastewater Using Photolysis: Parametric and Kinetic Studies

Collin G. Joseph1*, Yun Hin Taufiq-Yap2, L. Elilarasi and Vigneswar Krishnan1
1Sonophotochemistry Research Group, Faculty of Science and Natural Resources, Universiti Malaysia Sabah, 88400 Kota Kinabalu, Sabah
2Centre of Excellence for Catalysis Science and Technology, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang

 *Corresponding author: (e-mail: This email address is being protected from spambots. You need JavaScript enabled to view it.) 

Received: May 2017; Accepted: July 2017


In this study, the photodegradation of methylene blue (MB) simulated wastewater was investigated using three types of UV lamps emitting UV-A, UV-B, UV-C and a solar lamp emitting solar irradiation, as the source of light to enable the destruction of MB molecules by photochemical reactions. From the experimental data, UV-C irradiation proved to be the most effective irradiation light source that resulted in 96.7% degradation of MB after 5 h of irradiation, while solar irradiation treatment on the simulated dye wastewater degraded 29.6% of MB after 5 h of exposure and proved to be an encouraging option for this treatment as sunlight is a renewable, green energy source. COD analysis percentage of 83.3% achieved after 60 min proved the effectiveness of using this treatment option. Kinetic studies showed that all experiments fulfilled first-order kinetics (the correlation coefficient ranged between r=0.7495 to 0.998) for MB photo degradation.

Key words: Dye; photolysis; pretreatment; methylene blue; photodegradation; biochemical degradation; textile


1.    Hassan, W., Farooq, U., Ahmad, M., Athar, M. and Khan, M. A. (2013) Potential biosorbent, Haloxylon recurvum plant stems, for the removal of methylene blue dye, Arabian Journal of Chemistry.

2.    Chatterjee, D., Dasgupta, S. N. and Rao, N. (2006) Visible light assisted photodegradation of halocarbons on the dye modified TiO2 surface using visible light, Solar Energy Materials and Solar Cells, 90(7), 1013–1020.

3.    Bouaziz, F., Koubaa, M., Kallel, F., Chaari, F., Driss, D., Ghorbel, R. E. and Chaabouni, S. E. (2015) Efficiency of almond gum as a low-cost adsorbent for methylene blue dye removal from aqueous solutions, Industrial Crops and Products, 74, 903–911.

4.    Sun, W., Zhang, C., Chen, J., Zhang, B., Zhang, H., Zhang, Y. and Chen, L. (2017) Accelerating biodegradation of a monoazo dye Acid Orange 7 by using its endogenous electron donors, Journal of Hazardous Materials324, 739–743.

5.    Haspulat, B., Gülce, A. and Gülce, H. (2013) Efficient photocatalytic decolorization of some textile dyes using Fe ions doped polyaniline film on ITO coated glass substrate, Journal of Hazardous Materials, 260, 518–526.

6.    Houas, A., Lachheb, H., Ksibi, M., Elaloui, E., Guillard, C. and Herrmann, J. M. (2001) Photocatalytic degradation pathway of methylene blue in water, Applied Catalysis B: Environmental, 31(2), 145–157.

7.    Prieto, O., Fermoso, J., Nuñez, Y., Del Valle, J. L. and Irusta, R. (2005) Decolouration of textile dyes in wastewaters by photocatalysis with TiO2, Solar Energy, 79(4), 376–383.

8.    Mitrovic, J., Radović, M., Bojić, D., Anđelković, T., Purenović, M. and Bojić, A. (2012) Decolorization of textile azo dye reactive orange 16 with UV/H2O2 process, Journal of the Serbian Chemical Society, 77(4), 465–481.

9.    Wang, X., Mei, L., Xing, X., Liao, L., Lv, G., Li, Z. and Wu, L. (2014) Mechanism and process of methylene blue degradation by manganese oxides under microwave irradiation, Applied Catalysis B: Environmental, 160211–216.

10.  Bedekar, P. A., Kshirsagar, S. D., Gholave, A. R. and Govindwar, S. P. (2015) Degradation and detoxification of methylene blue dye adsorbed on water hyacinth in semi continuous anaerobic–aerobic bioreactors by novel microbial consortium-SB, RSC Advances, 5(120), 99228–99239.

11.  Joseph, C. G., Li Puma, G., Bono, A. and Krishnaiah, D. (2009) Sonophotocatalysis in advanced oxidation process: a short review. Ultrasonics Sonochemistry, 16(5), 583–589.

12.  Ledakowicz, S., Solecka, M. and Zylla, R. (2001) Biodegradation, decolourisation and detoxification of textile wastewater enhanced by advanced oxidation processes, Journal of Biotechnology, 89(2), 175–184.

13.  Kusic, H., Koprivanac, N. and Bozic, A. L. (2013) Environmental aspects on the photodegradation of reactive triazine dyes in aqueous media, Journal of Photochemistry and Photobiology A: Chemistry, 252, 131–144.

14.  Ollis, D., Silva, C. G. and Faria, J. (2015) Simultaneous photochemical and photocatalyzed liquid phase reactions: Dye decolorization kinetics, Catalysis Today, 240, 80–85.

15.  Keen, O. S., Baik, S., Linden, K. G., Aga, D. S. and Love, N. G. (2012) Enhanced biodegradation of carbamazepine after UV/H2O2 advanced oxidation, Environmental Science and Technology, 46(11), 6222–6227.

16.  Legrini, O., Oliveros, E. and Braun, A. M. (1993) Photochemical processes for water treatment, Chemical Reviews, 93(2), 671–698.

17.  Jurgens, M., Jacob, F., Ekici, P., Friess, A. and Parlar, H. (2007) Determination of direct photolysis rate constants and OH radical reactivity of representative odour compounds in brewery broth using a continuous flow-stirred photoreactor, Atmospheric Environment, 41(22), 4571–4584.

18.  Chemicals, D. (2005) OECD Guideline for testing of chemicals.

19.  Lee, S. K. and Mills, A. (2003), Novel photochemistry of leuco-methylene blue, Chemical Communications18, 2366–2367.

20.  Sahiner, N., Sagbas, S. and Aktas, N. (2015) Very fast catalytic reduction of 4-nitrophenol, methylene blue and eosin Y in natural waters using green chemistry: p (tannic acid)–Cu ionic liquid composites, RSC Advances5(24), 18183–18195.

21.  Joseph, C. G., Taufiq-Yap, Y. H., Li Puma, G., Sanmugam, K. and Quek, K. S. (2016) Photocatalytic degradation of cationic dye simulated wastewater using four radiation sources, UV-A, UV-B, UV-C and solar lamp of identical power output, Desalination and Water Treatment, 57(17), 7976–7987.

22.  Joseph, C. G., Yap, T. Y. H., Krishnan, V. and Letshmanan, E. (2017) Remediation of anionic dye simulated wastewater using TiO2  as a photocatalyst under various light irradiation wavelength, Malaysian Journal of Chemistry, 18(1), 27–36.

23.  Joseph, C. G., Puma, G. L., Bono, A., Yap, Y. H. and Krishnaiah, D. (2011) Operating parameters and synergistic effects of combining ultrasound and ultraviolet irradiation in the degradation of 2,4,6-trichlorophenol, Desalination, 276(13), 303–309.

24.  Rao, B., Estrada, N., McGee, S., Mangold, J., Gu, B. and Jackson, W. A. (2012) Perchlorate production by photodecomposition of aqueous chlorine solutions, Environmental science and technology, 46(21), 11635–11643.

25.  Awati, P. S., Awate, S. V., Shah, P. P. and Ramaswamy, V. (2003) Photocatalytic decomposition of methylene blue using nanocrystalline anatase titania prepared by ultrasonic technique, Catalysis Communications, 4(8)393–400.

26.  Hirahara, Y., Ueno, H. and Nakamuro, K. (2001) Comparative photodegradation study of fenthion and disulfoton under irradiation of different light sources in liquid-and solid phases, Journal of Health Science, 47(2), 129–135.

27.  Martin, M. A., González, I., Berrios, M., Siles, J. A. and Martin, A. (2011) Optimization of coagulation– flocculation process for wastewater derived from sauce manufacturing using factorial design of experiments, Chemical Engineering Journal, 172(2), 771–782.

28.  Keen, O. S., McKay, G., Mezyk, S. P., Linden, K. G. and Rosario-Ortiz, F. L. (2014) Identifying the factors that influence the reactivity of effluent organic matter with hydroxyl radicals, Water Research, 50,408–419.

29.  Nawi, M. A. and Zain, S. M. (2012) Enhancing the surface properties of the immobilized Degussa P-25 TiO2 for the efficient photocatalytic removal of methylene blue from aqueous solution, Applied Surface Science, 258(16)6148–6157.

30.  Mohabansi, N. P., Patil, V. B. and Yenkie, N. (2011) A comparative study on photo degradation of methylene blue dye effluent by advanced oxidation process by using TiO2/ZnO photo catalyst, Rasāyan Journal of Chemistry4(4), 814–819.

31.  Khan, H., Ahmad, N., Yasar, A. and Shahid, R. (2010) Advanced oxidative decolorization of Red Cl-5B: Effects of dye concentration, process optimization and reaction kinetics, J. Environ. Stud., 19(1), 83–92.

32.  Hao, O. J., Kim, H. and Chiang, P. C. (2000) Decolorization of wastewater, Critical Reviews in Environmental Science and Technology, 30(4), 449–505.

33.  Andronic, L. and Duta, A. (2012) Photodegradation processes in two-dyes systems-Simultaneous analysis by first-order spectra derivative method, Chemical Engineering Journal, 198, 468–475.

34.  Zhao, Z., Dai, H., Deng, J., Liu, Y., Wang, Y., Li, X. and Au, C. T. (2013) Porous FeOx/BiVO4-δS0.08: Highly efficient photocatalysts for the degradation of Methylene Blue under visible-light illumination, Journal of Environmental Sciences, 25(10), 2138–2149.

35.  Tennakone, K., Senadeera, S. and Priyadharshana, A. (1993) TiO2  catalysed photo-oxidation of water in the presence of methylene blue, Solar Energy Materials and Solar Cells, 29(2), 109–113.

36.  Wong, Y. C., Senan, M. S. R. and Atiqah, N. A. (2013) Removal of methylene blue and malachite green dye using different form of coconut fibre as absorbent, Journal of Basic and Applied Sciences, 9(173), 172–177.

37.  Tani, A., Thomson, A. J., and Butt, J. N. (2001) Methylene blue as an electrochemical discriminator of single- and double-stranded oligonucleotides immobilised on gold substrates, Analyst, 126(10), 1756–1759.

38.  Bayarri, B., Abellán, M. N., Giménez, J. and Esplugas, S. (2007) Catalysis Today, 129(1), 231–239.

39.  Petrović, S., Zvezdanović, J. and  Marković, D. (2017) Chlorophyll degradation in aqueous mediums induced by light and UV-B irradiation: An UHPLC-ESI-MS study. Radiation Physics and Chemistry, 141, 8–16. 

40.  Zhai, Y., Feng, W., Wang, Q. and Ning, X. (2015) Study on properties and synthesis of sulfonated coal supported nanostructure TiO2 photocatalysts. Catalysis Communications, 58, 103–107.

41.  Kansal, S. K., Singh, M. and Sud, D. (2007) Studies on photodegradation of two commercial dyes in aqueous phase using different photocatalysts, Journal of Hazardous Materials, 141(3), 581–590.

42.  Bayati, M. R., Golestani-Fard, F. and Moshfegh, A. Z. (2010) Visible photodecomposition of methylene blue over micro arc oxidized WO3-loaded TiO2 nano-porous layers, Applied Catalysis A: General, 382(2), 322–331.

43.  Ong, S. T., Cheong, W. S. and Hung, Y. T. (2012) Photodegradation of commercial dye, methylene blue using immobilized TiO2, 4th International Conference on Chemical, Biological and Environmental Engineering, 43109–113.

44.  Baeissa, E. S. (2014) Novel Pd/CaSn(OH)6 nanocomposite prepared by modified sonochemical method for photocatalytic degradation of methylene blue dye, Journal of Alloys and Compounds, 590, 303–308.

45.  Guimaraes, J. R., Maniero, M. G. and de Araújo, R. N. (2012) A comparative study on the degradation of RB- 19 dye in an aqueous medium by advanced oxidation processes, Journal of Environmental Management, 11033–39.

46.  Nezamzadeh-Ejhieh, A. and Karimi-Shamsabadi, M. (2014) Comparison of photocatalytic efficiency of supported CuO onto micro and nano particles of zeolite X in photodecolorization of methylene blue and methyl orange aqueous mixture, Applied Catalysis A: General, 477, 83–92.

47.  Banat, F., Al-Asheh, S., Al-Rawashdeh, M. M. and Nusair, M. (2005) Photodegradation of methylene blue dye by the UV/H2O2 and UV/acetone oxidation processes, Desalination, 181(1), 225–232.

48.  Li, K., Luo, X., Lin, X., Qi, F. and Wu, P. (2014) Novel NiCoMnO4 thermocatalyst for low-temperature catalytic degradation of methylene blue, Journal of Molecular Catalysis A: Chemical, 383, 1–9.

49.  Nansheng, D., Tao, F. and Shizhong, T. (1996) Photodegradation of dyes in aqueous solutions containing Fe(II)-hydroxy complex I, Chemosphere, 33(3), 547–557.

50.  Bubacz, K., Choina, J., Dolat, D. and  Morawski, A. W. (2010) Methylene blue and phenol photocatalytic degradation on nanoparticles of anatase TiO2, Polish Journal of Environmental Studies, 19(4), 685–691.

51.  Apollo, S., Onyango, M. S. and Ochieng, A. (2014) Integrated UV photodegradation and anaerobic digestion of textile dye for efficient biogas production using zeolite, Chemical Engineering Journal, 245, 241–247.

52.  Wu, C. H. (2004) Comparison of azo dye degradation efficiency using UV/single semiconductor and UV/coupled semiconductor systems, Chemosphere, 57(7), 601–608.

53.  Montazerozohori, M., Nasr-Esfahani, M. and Joohari, S. (2012) Photocatalytic degradation of an organic dye in some aqueous buffer solutions using nano titanium dioxide: a kinetic study, Environment Protection Engineering38(3), 45–55.

54.  Liu, J., Li, X., Luo, J., Duan, C., Hu, H. and Qian, G. (2013) Enhanced decolourisation of methylene blue by LDH-bacteria aggregates with bioregeneration, Chemical Engineering Journal, 242, 187–194.

55.  Adam, F., Muniandy, L. and Thangappan, R. (2013) Ceria and titania incorporated silica based catalyst prepared from rice husk: Adsorption and photocatalytic studies of methylene blue, Journal of Colloid and Interface Science, 406, 209–216.

56.  Hasnat, M. A., Safwan, J. A., Islam, M. S., Rahman, Z., Karim, M. R., Pirzada, T. J. and Rahman, M. M. (2014) Electrochemical decolorization of methylene blue at Pt electrode in KCl solution for environmental remediation, Journal of Industrial and Engineering Chemistry, 21, 787–791.

57.  Nubbe, M. E., Adams, V. D. and Moore, W. M. (1995) The direct and sensitized photo-oxidation of hexachlorocyclopentadiene,Water Research, 29(5), 1287–1293.

58.  Mills, A. and Wang, J. (1999) Photobleaching of methylene blue sensitized by TiO2: an ambiguous system?,Journal of Photochemistry and Photobiology A: Chemistry, 127(1), 123–134.

59.  Manu, B. and Chaudhari, S. (2002) Anaerobic decolorisation of simulated textile wastewater containing azo dyes, Bioresource Technology, 82(3), 225–231.

60.  Wang, F., Min, S., Han, Y. and Feng, L. (2010) Visible-light-induced photocatalytic degradation of methylene blue with polyaniline-sensitized composite photocatalysts, Superlattices and Microstructures, 48(2), 170–180.

61.  Parnis, J. M. and Oldham, K. B. (2013) Beyond the Beer-Lambert law: The dependence of absorbance on time in photochemistry, Journal of Photochemistry and Photobiology A: Chemistry, 267, 6–10.

62.  Huang, H., Leung, D. Y., Kwong, P. C., Xiong, J. and Zhang, L. (2012) Enhanced photocatalytic degradation of methylene blue under vacuum ultraviolet irradiation, Catalysis Today, 201, 189–194.

63.  Soltani, T. and Entezari, M. H. (2013) Photolysis and photocatalysis of methylene blue by ferrite bismuth nanoparticles under sunlight irradiation, Journal of Molecular Catalysis A: Chemical, 377, 197–203.

64.  DeRosa, M. C. and Crutchley, R. J. (2002) Photosensitized singlet oxygen and its applications, Coordination Chemistry Reviews, 233, 351–371.

65.  Kokane, S. B., Sartale, S. D., Betty, C. A. and Sasikala, R. (2014) Pd–TiO2–SrIn2O4 heterojunction photocatalyst: enhanced photocatalytic activity for hydrogen generation and degradation of methylene blue, RSC Advances4(98), 55539–55547.

66.  Tada, D. B., Vono, L. L., Duarte, E. L., Itri, R., Kiyohara, P. K., Baptista, M. S. and Rossi, L. M. (2007) Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy, Langmuir23(15), 8194–8199.

67.  Swati, M. and Meena, R. C. (2012) Photocatalytic degradation of textile dyes through an alternative photocatalyst methylene blue immobilized resin dowex 11 in presence of solar light, Archives of Applied Science Research4(1), 472–479.

68.  Buchko, G. W., Wagner, J. R., Cadet, J., Raoul, S. and Weinfeld, M. (1995) Methylene blue mediated photooxidation of 7,8-dihydro-8-oxo-2’-deoxyguanosine, Biochimica et Biophysica Acta (BBA)-Gene Structure and Expression, 1263(1), 17–24.

69.  Kadirova, Z. C., Katsumata, K. I., Isobe, T., Matsushita, N., Nakajima, A. and Okada, K. (2014) Adsorption and photodegradation of methylene blue with Fe2O3-activated carbons under UV-illumination in oxalate solution, Journal of Environmental Chemical Engineering, 2(1), 2026–2036.

View Full Article

back to top